| Peer-Reviewed

Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film

Received: 9 August 2018     Published: 10 August 2018
Views:       Downloads:
Abstract

Magnetoelectric composites are room-temperature functional materials for magnetics-electric energy conversion, which can be applied in ME sensors, microwave devices, memories and so on. Multiferroic composite thin film of ferroelectrics and magnets have attracted ever-increasing interest with the application of thin film materials in microelectronic technology in most recent years. In this review, magnetoelectric (ME) responses as well as fabrication and properties of such multiferroic composite thin films are introduced. The potential applications in novel ME devices are discussed. Finally, the review concludes with a remark on the future possibilities and scientific challenges in this field.

Published in Science Discovery (Volume 6, Issue 4)
DOI 10.11648/j.sd.20180604.17
Page(s) 268-275
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Magnetoelectric Composite Thin Film, Magnetoelectric Effect, Devices Application

References
[1] Fiebig, M., Revival of the Magnetoelectric Effect. J.phys.d Appl.phys, 2005. 36(33): p. R123-R152.
[2] Hu, J. M., et al., Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic/ferroelectric layered heterostructures. Journal of Applied Physics, 2011. 109(12): p. 031101.
[3] Martin, L. W. and R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Materialia, 2012. 60(6-7): p. 2449-2470.
[4] Ramesh, R. and N. A. Spaldin, Multiferroics: progress and prospects in thin films. 2007. 20-28.
[5] Zhou, Y., et al., Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvesting & Systems, 2016. 3(1): p. 1-42.
[6] 徐丽蓉,环形层状磁电复合材料的制备及其性能研究.2018,北京科技大学。
[7] 何泓材,林元华,and南策文,多铁性磁电复合薄膜.科学通报,2008.53(10):p.1136-1148。
[8] 郑仁奎and李晓光,多铁性磁电复合薄膜研究.物理学进展,2013(6):p.359-368。
[9] Suchtelen, J. V., Product Properties: A New Application of Composite Materials. 1972.
[10] Grössinger, R., G. V. Duong, and R. Sato-Turtelli, The physics of magnetoelectric composites. Journal of Magnetism & Magnetic Materials, 2008. 320(14): p. 1972-1977.
[11] Laletin, V. M. and G. Srinivasan, Magnetoelectric Effects in Composites of Nickel Ferrite and Barium Lead Zirconate Titanate. Ferroelectrics, 2002. 280(1): p. 177-185.
[12] Srinivasan, G., et al., Magnetoelectric Bilayer and Multilayer Structures of Magnetostrictive and Piezoelectric Oxides. Physical Review B Condensed Matter, 2001. 64(21): p. 214408.
[13] Wan, J. G., et al., Magnetoelectric properties of a heterostructure of magnetostrictive and piezoelectric composites. Magnetics IEEE Transactions on, 2004. 40(4): p. 3042-3044.
[14] Zheng, H., et al., Multiferroic$BaTiO_{3}-CoFe_{2}O_{4}$Nanostructures. Science, 2004. 303(5658): p. 661-663.
[15] 仲崇贵, 多铁性材料的磁电效应研究. 2010, 苏州大学。
[16] Boomgaard, J. V. D. and R. A. J. Born, A sintered magnetoelectric composite material BaTiO 3 -Ni(Co, Mn) Fe 2 O 4. Journal of Materials Science, 1978. 13(7): p. 1538-1548.
[17] Boomgaard, J. V. D., A. M. J. G. V. Run, and J. V. Suchtelen, Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics, 1976. 10(1): p. 295-298.
[18] Ryu, H., et al., Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films. Applied Physics Letters, 2006. 89(10): p. 55.
[19] Zhong, X. L., et al., Multiferroic nanoparticulate Bi3.15Nd0.85Ti3O12–CoFe2O4 composite thin films prepared by a chemical solution deposition technique. Applied Physics Letters, 2007. 90(15): p. 6694.
[20] Liu, M., et al., A modified sol-gel process for multiferroic nanocomposite films. Journal of Applied Physics, 2007. 102(8): p. 759-1796.
[21] Park, J. H., et al., Strain-mediated magnetoelectric coupling in Ba Ti O 3 - Co nanocomposite thin films. Applied Physics Letters, 2008. 92(6): p. 062908-062908-3.
[22] Park, J. H., H. H. Shin, and H. M. Jang, Quasi-intrinsic magnetoelectric coupling in multiferroic nanocomposite thin films. Physical Review B Condensed Matter, 2008. 77(21): p. -.
[23] Zheng, H. M., et al., Multiferroic BaTiO3 -CoFe2 O4 nanostructures. Science. Science, 2004. 303(5658): p. 661-663.
[24] Zheng, H., et al., Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures. Applied Physics Letters, 2004. 85(11): p. 2035-2037.
[25] Boomgaard, J. V. D., et al., An in situ grown eutectic magnetoelectric composite material. Journal of Materials Science, 1974. 9(10): p. 1705-1709.
[26] Zavaliche, F., et al., Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Letters, 2005. 5(9): p. 1793.
[27] Chang, C. M., et al., Thermally mediated mechanism to enhance magnetoelectric coupling in multiferroics. Physical Review Letters, 2015. 114(17): p. 177205.
[28] Jia, C., et al., Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Scientific Reports, 2015. 5: p. 11111.
[29] Nan, C. W., et al., Magnetic-field-induced electric polarization in multiferroic nanostructures. Physical Review Letters, 2005. 94(19): p. 197203.
[30] Petrov, V. M., et al., Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105:063911. Journal of Applied Physics, 2009. 105(6): p. R123.
[31] Dorr, K., et al., Dynamic strain in magnetic films on piezoelectric crystals. Journal of Magnetism and Magnetic Materials, 2007. 310(2): p. 1182-1184.
[32] Lee, M. K., et al., Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Applied Physics Letters, 2000. 77(22): p. 3547-3549.
[33] Deng, C., et al., Magnetic-electric properties of epitaxial multiferroic Ni Fe 2 O 4 – Ba Ti O 3 heterostructure. Journal of Applied Physics, 2007. 102(7): p. 074114-074114-5.
[34] Yang, J. J., et al., Electric field manipulation of magnetization at room temperature in multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures. Applied Physics Letters, 2009. 94(21): p. 212504-212504-3.
[35] 南策文,多铁性材料研究进展及发展方向.中国科学:技术科学,2015(4):p.339-357。
[36] Dong, S., et al., Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Applied Physics Letters, 2005. 87(6): p. 062502-062502-3.
[37] Okada, N., et al., MEMS Magnetic Sensor with Bridge‐Type Resonator and Magnetostrictive Thin Film. Electronics & Communications in Japan, 2018. 101(3).
[38] Nan, T., et al., Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Scientific Reports, 2013. 3(6): p. 1985.
[39] Nan, C. W., et al., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008. 103(3): p. 031101-031101-35.
[40] Dong, S., J. F. Li, and D. Viehland, Circumferentially Magnetized and Circumferentially Polarized Magnetostrictive/Piezoelectric Laminated Rings. Journal of Applied Physics, 2004. 96(6): p. 3382-3387.
[41] Dong, S., J. Li, and D. D. Viehland, Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Applied Physics Letters, 2004. 85(12): p. 2307-2309.
[42] Dong, S., et al., Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite—a highly sensitive electric current and∕or vortex magnetic field sensor. Applied Physics Letters, 2005. 86(18): p. 182506-182506-3.
[43] 万红,TbDyFe薄膜的磁致伸缩性能及其与弹性、压电衬底复合效应研究 2005,国防科学技术大学。
[44] 李扩社,et al.,磁电复合材料的研究进展.稀有金属,2008.32(3):p.369-374。
[45] Tatarenko, A. S., V. Gheevarughese, and G. Srinivasan, Magnetoelectric microwave bandpass filter. Electronics Letters, 2006. 42(9): p. 540-541.
[46] Kohlstedt, H., et al., Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Physics, 2005. 72(12).
[47] Tsymbal, E. Y. and H. Kohlstedt, Applied physics. Tunneling across a ferroelectric. Science, 2006. 313(5784): p. 181.
[48] Tsymbal, E. Y. and H. Kohlstedt, Tunneling across a Ferroelectric. Science, 2006. 313(5784): p. 181-183.
[49] Garcia, V., et al., Ferroelectric Control of Spin Polarization. Science, 2010. 327(5969): p. 1106-10.
[50] Blasi, P., et al., Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nature Materials, 2012. 11(4): p. 289-293.
[51] Bibes, M. and A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nature Materials, 2008. 7(6): p. 425-6.
[52] Brintlinger, T., et al., In Situ Observation of Reversible Nanomagnetic Switching Induced by Electric Fields. Nano Letters, 2010. 10(4): p. 1219-1223.
[53] Bibes, M. and A. Barthélémy, Towards a magnetoelectric memory. 2008.
[54] Wu, S. M., et al., Full electric control of exchange bias. Physical Review Letters, 2013. 110(6): p. 067202.
[55] Wu, S. M., et al., Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Materials, 2010. 9(9): p. 756-61.
[56] 张吉文,多铁性纳米材料的制备与结构表征.2015,西安电子科技大学。
Cite This Article
  • APA Style

    Ziwei Lian, Jing Zhu, Men Kuo. (2018). Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film. Science Discovery, 6(4), 268-275. https://doi.org/10.11648/j.sd.20180604.17

    Copy | Download

    ACS Style

    Ziwei Lian; Jing Zhu; Men Kuo. Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film. Sci. Discov. 2018, 6(4), 268-275. doi: 10.11648/j.sd.20180604.17

    Copy | Download

    AMA Style

    Ziwei Lian, Jing Zhu, Men Kuo. Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film. Sci Discov. 2018;6(4):268-275. doi: 10.11648/j.sd.20180604.17

    Copy | Download

  • @article{10.11648/j.sd.20180604.17,
      author = {Ziwei Lian and Jing Zhu and Men Kuo},
      title = {Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film},
      journal = {Science Discovery},
      volume = {6},
      number = {4},
      pages = {268-275},
      doi = {10.11648/j.sd.20180604.17},
      url = {https://doi.org/10.11648/j.sd.20180604.17},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20180604.17},
      abstract = {Magnetoelectric composites are room-temperature functional materials for magnetics-electric energy conversion, which can be applied in ME sensors, microwave devices, memories and so on. Multiferroic composite thin film of ferroelectrics and magnets have attracted ever-increasing interest with the application of thin film materials in microelectronic technology in most recent years. In this review, magnetoelectric (ME) responses as well as fabrication and properties of such multiferroic composite thin films are introduced. The potential applications in novel ME devices are discussed. Finally, the review concludes with a remark on the future possibilities and scientific challenges in this field.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Research Progress and Application of Multiferroic Magnetoelectric Composite Thin Film
    AU  - Ziwei Lian
    AU  - Jing Zhu
    AU  - Men Kuo
    Y1  - 2018/08/10
    PY  - 2018
    N1  - https://doi.org/10.11648/j.sd.20180604.17
    DO  - 10.11648/j.sd.20180604.17
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 268
    EP  - 275
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20180604.17
    AB  - Magnetoelectric composites are room-temperature functional materials for magnetics-electric energy conversion, which can be applied in ME sensors, microwave devices, memories and so on. Multiferroic composite thin film of ferroelectrics and magnets have attracted ever-increasing interest with the application of thin film materials in microelectronic technology in most recent years. In this review, magnetoelectric (ME) responses as well as fabrication and properties of such multiferroic composite thin films are introduced. The potential applications in novel ME devices are discussed. Finally, the review concludes with a remark on the future possibilities and scientific challenges in this field.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd, Beijing, China

  • State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd, Beijing, China

  • State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd, Beijing, China

  • Sections